hallar:
a) A x B
b) A . B
c) A + B
d) A - B
e) B x A
A)
AxB = (-3)(-2)i + (-1)(1)j + (2)(4)k - (-3)(1)k - (-1)(4)i - (-3)(1)j AxB= 6i - j + 8k + 3k + 4i + 4j AxB= 10i + 3j + 11k
B)
A.B= (2)(1)i + (-3)(4)j + (-1)(-2)k A.B= 2i - 12j + 2k
C) A+B = (2+1)i + (-3+4)i + (-1-2)k A+B= 3i + j - 3k
D)
A-B = (2-1)i - (-3-4)j - (-1-2)k A-B = i - 7j - 3k
E)
BxA= 4(-1)i + (-2)(2)j + (1)(-3)k - (4)(2)k + (-2)(-3)i + (1)(-1)k. BxA= -4i - 4j -3k -8k -6i + j BxA= -10i - 3j - 11k
2.- Hallar el area del triangulo cuyos vertices son los puntos
P(1,3,2) G(2,-1,1) R(1,2,3)
a= PG= (1,-4,-1)=i-4j-k
a= PG= (1,-4,-1)=i-4j-k
b=PR= (0,-1,1)=-j+k
AxB= -4(1)i + (-1)(0)j + (1)(-1)k - (-4)(0)k + (-1)(-1)i + (1)(1)j
AxB= -4(1)i + (-1)(0)j + (1)(-1)k - J + J=
AxB= -5i + j - kAxB = 5.1961 AxB/2= 5.1961/2 = 2.5980
3.- Determinar el vector unitario perpendicular al plano formado por A=2i - 6j - 3k y B = 4i + 3j - k
4.- Hallar (2i - 3j) . (( i + j - k) x ( 3i - k))
= (2i - 3j) (3i + j - k)
= (2i - 3j) (3i + j - k)
= 6i - 3j - k
6.- Para que valores de A= ai - 2j + k y B= 2ai + aj - 4k son perpendiculares:
No hay comentarios:
Publicar un comentario